Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138
1.
Front Plant Sci ; 15: 1372361, 2024.
Article En | MEDLINE | ID: mdl-38633461

Plants are remarkable in their ability to adapt to changing environments, with receptor-like kinases (RLKs) playing a pivotal role in perceiving and transmitting environmental cues into cellular responses. Despite extensive research on RLKs from the plant kingdom, the function and activity of many kinases, i.e., their substrates or "clients", remain uncharted. To validate a novel client prediction workflow and learn more about an important RLK, this study focuses on P2K1 (DORN1), which acts as a receptor for extracellular ATP (eATP), playing a crucial role in plant stress resistance and immunity. We designed a Kinase-Client (KiC) assay library of 225 synthetic peptides, incorporating previously identified P2K phosphorylated peptides and novel predictions from a deep-learning phosphorylation site prediction model (MUsite) and a trained hidden Markov model (HMM) based tool, HMMER. Screening the library against purified P2K1 cytosolic domain (CD), we identified 46 putative substrates, including 34 novel clients, 27 of which may be novel peptides, not previously identified experimentally. Gene Ontology (GO) analysis among phosphopeptide candidates revealed proteins associated with important biological processes in metabolism, structure development, and response to stress, as well as molecular functions of kinase activity, catalytic activity, and transferase activity. We offer selection criteria for efficient further in vivo experiments to confirm these discoveries. This approach not only expands our knowledge of P2K1's substrates and functions but also highlights effective prediction algorithms for identifying additional potential substrates. Overall, the results support use of the KiC assay as a valuable tool in unraveling the complexities of plant phosphorylation and provide a foundation for predicting the phosphorylation landscape of plant species based on peptide library results.

2.
BMC Genomics ; 25(1): 357, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600449

BACKGROUND: Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS: We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION: Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.


Chickens , RNA, Long Noncoding , Female , Animals , Chickens/genetics , Chickens/metabolism , Ovary/metabolism , RNA, Long Noncoding/metabolism , Gene Expression Profiling , RNA, Messenger/metabolism , Gene Regulatory Networks
3.
Front Physiol ; 15: 1358682, 2024.
Article En | MEDLINE | ID: mdl-38426211

Introduction: Long non-coding RNA (lncRNA) refers to a category of non-coding RNA molecules exceeding 200 nucleotides in length, which exerts a regulatory role in the context of ovarian development. There is a paucity of research examining the involvement of lncRNA in the regulation of ovary development in Taihe Black-Bone Chickens. In order to further investigate the egg laying regulation mechanisms of Taihe Black-Bone Chickens at different periods, transcriptome analysis was conducted on the ovarian tissues at different laying periods. Methods: This study randomly selected ovarian tissues from 12 chickens for RNA-seq. Four chickens were selected for each period, including the early laying period (102 days, Pre), the peak laying period (203 days, Peak), and the late laying period (394 days, Late). Based on our previous study of mRNA expression profiles in the same ovarian tissue, we identified three differentially expressed lncRNAs (DE lncRNAs) at different periods and searched for their cis- and trans-target genes to draw an lncRNA-mRNA network. Results and discussion: In three groups of ovarian tissues, we identified 136 DE lncRNAs, with 8 showing specific expression during the early laying period, 10 showing specific expression during the peak laying period, and 4 showing specific expression during the late laying period. The lncRNA-mRNA network revealed 16 pairs of lncRNA-target genes associated with 7 DE lncRNAs, and these 14 target genes were involved in the regulation of reproductive traits. Furthermore, these reproductive-related target genes were primarily associated with signaling pathways related to follicle and ovary development in Taihe Black-Bone Chickens, including cytokine-cytokine receptor interaction, TGF-beta signaling pathway, tyrosine metabolism, ECM-receptor interaction, focal adhesion, neuroactive ligand-receptor interaction, and cell adhesion molecules (CAMs). This study offers valuable insights for a comprehensive understanding of the influence of lncRNAs on poultry reproductive traits.

4.
Langmuir ; 40(9): 5001-5010, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38388338

MgO has broad application potential in CO2 capture at intermedium temperatures. In this paper, the effects of NaNO3 doping on the properties of MgO prepared by using waste bischofite as the raw material were investigated to improve the performance of the CO2 capture. MgO-doped NaNO3 exhibited excellent CO2 capture performance at 320 °C with a maximum adsorption capacity of 36.62 wt %. MgO-doped NaNO3 has good cycling stability after 10 adsorption-desorption cycle experiments. In addition, CO2 adsorption on pure MgO and MgO-NaNO3 surfaces was investigated in accordance with density functional theory. Calculation results show that doping with NaNO3 allows more electrons to be transferred from the MgO substrate to the CO2 molecule. MgO-doped NaNO3 can lead to an increase in adsorption energy, resulting in a more stable structure after adsorption and thereby promoting adsorption. The result of this study provides an effective method for the comprehensive utilization of salt lake resources.

5.
Plant Commun ; 5(5): 100836, 2024 May 13.
Article En | MEDLINE | ID: mdl-38327059

RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.


Mitochondria , Plant Proteins , Plastids , RNA Editing , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plastids/metabolism , Plastids/genetics , Mitochondria/metabolism , Mitochondria/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
6.
Sci Rep ; 14(1): 2243, 2024 01 26.
Article En | MEDLINE | ID: mdl-38278855

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous potential for basic research and translational application. However, these cells structurally and functionally resemble fetal cardiomyocytes, which is a major limitation of these cells. Microgravity can significantly alter cell behavior and function. Here we investigated the effect of simulated microgravity on hiPSC-CM maturation. Following culture under simulated microgravity in a random positioning machine for 7 days, 3D hiPSC-CMs had increased mitochondrial content as detected by a mitochondrial protein and mitochondrial DNA to nuclear DNA ratio. The cells also had increased mitochondrial membrane potential. Consistently, simulated microgravity increased mitochondrial respiration in 3D hiPSC-CMs, as indicated by higher levels of maximal respiration and ATP content, suggesting improved metabolic maturation in simulated microgravity cultures compared with cultures under normal gravity. Cells from simulated microgravity cultures also had improved Ca2+ transient parameters, a functional characteristic of more mature cardiomyocytes. In addition, these cells had improved structural properties associated with more mature cardiomyocytes, including increased sarcomere length, z-disc length, nuclear diameter, and nuclear eccentricity. These findings indicate that microgravity enhances the maturation of hiPSC-CMs at the structural, metabolic, and functional levels.


Induced Pluripotent Stem Cells , Weightlessness , Humans , Myocytes, Cardiac/metabolism , Cells, Cultured , Sarcomeres , Cell Differentiation
7.
Plant Physiol ; 195(1): 430-445, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38198212

The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and 2 other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.


Gene Expression Regulation, Plant , Mutation , Plant Proteins , Plastids , Seedlings , Seeds , Zea mays , Zea mays/genetics , Zea mays/embryology , Seedlings/genetics , Seedlings/growth & development , Seeds/genetics , Seeds/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation/genetics , Plastids/genetics , Plastids/metabolism , Phenotype , RNA Splicing/genetics , Introns/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
8.
J Microbiol Immunol Infect ; 57(1): 11-19, 2024 Feb.
Article En | MEDLINE | ID: mdl-38065767

BACKGROUND: Metagenomic Next-Generation Sequencing (mNGS) is a rapid, non-culture-based, high-throughput technique for pathogen diagnosis. Despite its numerous advantages, only a few studies have investigated its use in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: We conducted a retrospective analysis of 404 mNGS tests performed on 264 patients after allo-HSCT. The tests were divided into three groups (Phase A, B, C) based on the time spent hospitalized post-transplantation, and we evaluated the analytical performance of mNGS in comparison with conventional microbiological tests (CMT), while also analyzing its clinical utility for clinical impacts. RESULTS: Metagenomic sequencing demonstrated a significantly higher rate of positive microbiological findings as compared to CMT (334/404 (82.7 %) vs. 159/404 (39.4 %), respectively, P < 0.001). The detection rates by both mNGS and CMT varied across the three-phase (mNGS: A-60/89 (67.4 %), B-147/158 (93.0 %), C-125/157 (79.6 %), respectively, P < 0.001; CMT: A-21/89 (23.6 %), B-79/158 (50.0 %), C-59/157 (37.6 %), respectively, P < 0.001). The infection sites and types of pathogens were also different across the three phases. Compared to non-GVHD cases, mNGS detected more Aspergillus spp. and Mucorales in GVHD patients (Aspergillus: 12/102 (11.8 %) vs. 8/158 (5.1 %), respectively, P = 0.048; Mucorales: 6/102 (5.9 %) vs. 2/158 (1.3 %), respectively, P = 0.035). Forty-five (181/404) percent of mNGS tests yielded a positive impact on the clinical diagnosis, while 24.3 % (98/404) of tests benefited the patients in antimicrobial treatment. CONCLUSION: mNGS is an indispensable diagnostic tool in identifying pathogens and optimizing antibiotic therapy for hematological patients receiving allo-HSCT.


Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Humans , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Metagenomics , Sensitivity and Specificity
9.
Clin Microbiol Infect ; 30(1): 107-113, 2024 Jan.
Article En | MEDLINE | ID: mdl-37271194

OBJECTIVES: To evaluate the diagnostic performance and clinical impact of metagenomic next-generation sequencing (mNGS) of plasma microbial cell-free DNA (mcfDNA) in febrile neutropenia (FN). METHODS: In a 1-year, multicentre, prospective study, we enrolled 442 adult patients with acute leukaemia with FN and investigated the usefulness of mNGS of plasma mcfDNA for identification of infectious pathogens. The results of mNGS were available to clinicians in real time. The performance of mNGS testing was evaluated in comparison with blood culture (BC) and a composite standard that incorporated standard microbiological testing and clinical adjudication. RESULTS: In comparison with BC, the positive and negative agreements of mNGS were 81.91% (77 of 94) and 60.92% (212 of 348), respectively. By clinical adjudication, mNGS results were categorized by infectious diseases specialists as definite (n = 76), probable (n = 116), possible (n = 26), unlikely (n = 7), and false negative (n = 5). In 225 mNGS-positive cases, 81 patients (36%) underwent antimicrobials adjustment, resulting in positive impact on 79 patients and negative impact on two patients (antibiotics overuse). Further analysis indicated that mNGS was less affected by prior antibiotics exposure than BC. DISCUSSION: Our results indicate that mNGS of plasma mcfDNA increased the detection of clinically significant pathogens and enabled early optimization of antimicrobial therapy in patients with acute leukaemia with FN.


Cell-Free Nucleic Acids , Febrile Neutropenia , Leukemia, Myeloid, Acute , Adult , Humans , Prospective Studies , Leukemia, Myeloid, Acute/complications , High-Throughput Nucleotide Sequencing , Anti-Bacterial Agents , Metagenomics , Febrile Neutropenia/diagnosis , Sensitivity and Specificity
10.
Food Chem ; 440: 138186, 2024 May 15.
Article En | MEDLINE | ID: mdl-38104456

Navel orange remains metabolized continuously during postharvest storage, but few studies have monitored the changes of these metabolites. Therefore, HS-SPME-GC-MS and UPLC-Q-TOF/MS were used to comprehensively investigate the dynamic changes of the components of Gannan navel orange during storage at room temperature. A total of 62 volatile components and 68 non-volatile components were identified. Principal Component Analysis and Partial Least Squares Discriminant Analysis showed that navel orange under different storage periods were clearly distinguished. Combined with VIP > 1 and p < 0.05, 19 volatile and 27 non-volatile differential metabolites were obtained. KEGG enrichment analysis revealed that flavonoid biosynthesis (map00941) was the primary metabolic pathway. The middle storage period had a higher antioxidant enzyme activity, but the malondialdehyde content was the opposite. These results reveal the changes of postharvest components of Gannan navel orange, providing a theoretical basis for the storage and product development of navel orange.


Citrus sinensis , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Solid Phase Microextraction/methods , Temperature , Metabolomics/methods , Antioxidants
11.
NPJ Microgravity ; 9(1): 88, 2023 Dec 09.
Article En | MEDLINE | ID: mdl-38071377

Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors.

12.
Stem Cell Res Ther ; 14(1): 322, 2023 11 08.
Article En | MEDLINE | ID: mdl-37941041

BACKGROUND: Cardiac pathological outcome of metabolic remodeling is difficult to model using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) due to low metabolic maturation. METHODS: hiPSC-CM spheres were treated with AMP-activated protein kinase (AMPK) activators and examined for hiPSC-CM maturation features, molecular changes and the response to pathological stimuli. RESULTS: Treatment of hiPSC-CMs with AMPK activators increased ATP content, mitochondrial membrane potential and content, mitochondrial DNA, mitochondrial function and fatty acid uptake, indicating increased metabolic maturation. Conversely, the knockdown of AMPK inhibited mitochondrial maturation of hiPSC-CMs. In addition, AMPK activator-treated hiPSC-CMs had improved structural development and functional features-including enhanced Ca2+ transient kinetics and increased contraction. Transcriptomic, proteomic and metabolomic profiling identified differential levels of expression of genes, proteins and metabolites associated with a molecular signature of mature cardiomyocytes in AMPK activator-treated hiPSC-CMs. In response to pathological stimuli, AMPK activator-treated hiPSC-CMs had increased glycolysis, and other pathological outcomes compared to untreated cells. CONCLUSION: AMPK activator-treated cardiac spheres could serve as a valuable model to gain novel insights into cardiac diseases.


AMP-Activated Protein Kinases , Induced Pluripotent Stem Cells , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cells, Cultured , Proteomics , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/physiology
13.
Nat Commun ; 14(1): 7367, 2023 11 14.
Article En | MEDLINE | ID: mdl-37963892

Identifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a non-parametric model by comparing gene expression pattens at two spatial granularities to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.


Arthritis, Rheumatoid , Humans , Gene Expression Profiling , Kidney , Phenotype , Technology , Transcriptome
14.
Sci Adv ; 9(48): eadi7375, 2023 12.
Article En | MEDLINE | ID: mdl-38019913

Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.


Erythropoiesis , Myelodysplastic Syndromes , Animals , Humans , Mice , Erythropoiesis/genetics , Myelodysplastic Syndromes/genetics , Nerve Tissue Proteins/genetics , Prognosis , Receptors, Immunologic/genetics , Roundabout Proteins
15.
Front Genet ; 14: 1222087, 2023.
Article En | MEDLINE | ID: mdl-37876591

The poor reproductive performance of most local Chinese chickens limits the economic benefits and output of related enterprises. As an excellent local breed in China, Taihe black-bone silky fowl is in urgent need of our development and utilization. In this study, we performed transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP) to reveal the molecular mechanisms affecting reproductive performance. In the transcriptome, we identified five key differentially expressed genes (DEGs) that may affect the reproductive performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN, as well as three important pathways: the extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the metabolome, we predicted three important ovarian significantly differential metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: "LPC 20:4-BCHE", "Bisphenol A-SMOC1", and "Cortisol- SCIN". In summary, this study contributes to a deeper understanding of the regulatory mechanism of egg production in Taihe black-bone silky fowl and provides a scientific basis for improving the reproductive performance of Chinese local chickens.

16.
Nat Commun ; 14(1): 6789, 2023 10 25.
Article En | MEDLINE | ID: mdl-37880207

Cold stress affects rice growth and productivity. Defects in the plastid-localized pseudouridine synthase OsPUS1 affect chloroplast ribosome biogenesis, leading to low-temperature albino seedlings and accumulation of reactive oxygen species (ROS). Here, we report an ospus1-1 suppressor, sop10. SOP10 encodes a mitochondria-localized pentatricopeptide repeat protein. Mutations in SOP10 impair intron splicing of the nad4 and nad5 transcripts and decrease RNA editing efficiency of the nad2, nad6, and rps4 transcripts, resulting in deficiencies in mitochondrial complex I, thus decrease ROS generation and rescuing the albino phenotype. Overexpression of different compartment-localized superoxide dismutases (SOD) genes in ospus1-1 reverses the ROS over-accumulation and albino phenotypes to various degrees, with Mn-SOD reversing the best. Mutation of SOP10 in indica rice varieties enhances cold tolerance with lower ROS levels. We find that the mitochondrial superoxide plays a key role in rice cold responses, and identify a mitochondrial superoxide modulating factor, informing efforts to improve rice cold tolerance.


Oryza , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Superoxides/metabolism , Oryza/metabolism , Reactive Oxygen Species/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Gene Expression Regulation, Plant
18.
Elife ; 122023 09 06.
Article En | MEDLINE | ID: mdl-37672386

While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection - the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.


Cells are powered by mitochondria, a group of organelles that produce chemical energy in the form of molecules called ATP. This energy is derived from the breakdown of carbohydrates, fats, and proteins. The number of mitochondria in a cell and the energy source they use to produce ATP varies depending on the type of cell. Mitochondria can also switch the molecules they use to produce energy when the cell is responding to stress or disease. The heart and the skeletal muscles ­ which allow movement ­ are two tissues that require large amounts of energy, but it remained unknown whether disrupting mitochondrial fuel selection affects how these tissues work. To answer these questions, Zheng, Li, Li et al. investigated the role of an enzyme found in mitochondria called Ptpmt1. Genetically deleting Ptpmt1 in the heart and skeletal muscle of mice showed that while the development of these organs was not affected, mitochondria in these cells switched from using carbohydrates to using fats as an energy source. Over time, this shift damaged both the mitochondria and the tissues, leading to muscle wasting, heart failure, and sudden death in the mice. This suggests that balanced use of carbohydrates and fats is essential for the muscles and heart. These findings imply that long-term use of medications that alter the fuel that mitochondria use may be detrimental to patients' health and could cause heart dysfunction. This may be important for future drug development, as well as informing decisions about medication taken in the clinic.


Heart Failure , Animals , Mice , Fatty Acids , Glucose , Heart Failure/genetics , Mice, Knockout , Mitochondria , Muscular Atrophy
19.
J Integr Plant Biol ; 65(11): 2456-2468, 2023 Nov.
Article En | MEDLINE | ID: mdl-37594235

RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA-protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.


Plant Proteins , Zea mays , Humans , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Introns/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Gene Expression Regulation, Plant , Seeds/metabolism , Mitochondria/metabolism , RNA/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism
20.
Sci Adv ; 9(35): eadg9245, 2023 09.
Article En | MEDLINE | ID: mdl-37647399

Fluorescence microscopy is one of the most indispensable and informative driving forces for biological research, but the extent of observable biological phenomena is essentially determined by the content and quality of the acquired images. To address the different noise sources that can degrade these images, we introduce an algorithm for multiscale image restoration through optimally sparse representation (MIRO). MIRO is a deterministic framework that models the acquisition process and uses pixelwise noise correction to improve image quality. Our study demonstrates that this approach yields a remarkable restoration of the fluorescence signal for a wide range of microscopy systems, regardless of the detector used (e.g., electron-multiplying charge-coupled device, scientific complementary metal-oxide semiconductor, or photomultiplier tube). MIRO improves current imaging capabilities, enabling fast, low-light optical microscopy, accurate image analysis, and robust machine intelligence when integrated with deep neural networks. This expands the range of biological knowledge that can be obtained from fluorescence microscopy.


Algorithms , Electrons , Microscopy, Fluorescence , Image Processing, Computer-Assisted , Neural Networks, Computer
...